Tridora-CPU/tridoracpu/tridoracpu.srcs/tdraudio.v

272 lines
7.7 KiB
Verilog

`timescale 1ns / 1ps
// waveform generator module (pulse wave or noise)
module wavegen #(DATA_WIDTH=32, CLOCK_DIV_WIDTH=22,
AMP_WIDTH=16, AMP_BIAS=32768) (
input wire clk,
input wire reset,
input wire [1:0] reg_sel,
output wire [DATA_WIDTH-1:0] rd_data,
input wire [DATA_WIDTH-1:0] wr_data,
input wire rd_en,
input wire wr_en,
output wire [AMP_WIDTH-1:0] amp_val,
output wire running
);
localparam TDRAU_REG_CTL = 0; /* control register */
localparam TDRAU_REG_CLK = 1; /* clock divider register */
localparam TDRAU_REG_AMP = 2; /* amplitude (volume) register */
// localparam LFSR_WIDTH = 18;
// localparam LFSR_TAP_IDX_1 = 17;
// localparam LFSR_TAP_IDX_2 = 10;
// localparam LFSR_INIT = 'h3CBE6;
localparam LFSR_WIDTH = 23;
localparam LFSR_INIT = 'h1;
reg channel_enable;
reg [CLOCK_DIV_WIDTH-1:0] clock_div;
reg [CLOCK_DIV_WIDTH-1:0] div_count;
reg amp_phase;
reg [AMP_WIDTH-1:0] amp_start;
reg [AMP_WIDTH-1:0] amp_out;
reg noise_enable;
reg [LFSR_WIDTH-1:0] lfsr;
wire [AMP_WIDTH-1:0] noise_out;
reg direct_amp_enable;
//assign rd_data = {{DATA_WIDTH-8-CLOCK_DIV_WIDTH{1'b0}}, div_count, {7{1'b0}}, channel_enable};
assign rd_data = {8'b0, amp_start,
{6{1'b0}}, amp_phase, channel_enable};
assign amp_val = amp_out;
assign running = channel_enable;
wire ctl_reg_write = wr_en && (reg_sel == TDRAU_REG_CTL);
/* channel enable flag */
always @(posedge clk)
begin
if(reset)
channel_enable <= 0;
else if (ctl_reg_write)
channel_enable <= wr_data[0];
end
/* clock divider register */
always @(posedge clk)
begin
if(reset)
clock_div <= 0;
else
if (wr_en && (reg_sel == TDRAU_REG_CLK))
clock_div <= wr_data;
end
/* amplitude register */
always @(posedge clk)
begin
if(reset)
amp_start <= 0;
else
if (wr_en && (reg_sel == TDRAU_REG_AMP))
amp_start <= wr_data;
end
/* divider counter */
always @(posedge clk)
begin
if(channel_enable)
begin
if(div_count == 0) // reset counter if it reaches zero
div_count <= clock_div;
else
div_count <= div_count - 1; // else just decrement it
end
else
if (wr_en && (reg_sel == TDRAU_REG_CLK)) // when setting divider,
div_count <= 1; // start cycle on next clock tick
end
/* noise enable flag */
always @(posedge clk)
begin
if(reset)
noise_enable <= 0;
else if (ctl_reg_write)
noise_enable <= wr_data[1];
end
/* noise generator (Linear Feedback Shift Register) */
always @(posedge clk)
begin
if (reset)
lfsr <= LFSR_INIT;
else
if (ctl_reg_write && wr_data[1])
lfsr <= LFSR_INIT;
else
if (channel_enable && noise_enable)
if (div_count == 0)
//lfsr <= { lfsr[LFSR_TAP_IDX_1] ^ lfsr[LFSR_TAP_IDX_2], lfsr[LFSR_WIDTH-1:1] };
// shift width and tap bits taken from https://github.com/jotego/jtopl
lfsr <= { lfsr[LFSR_WIDTH-2:0], lfsr[22] ^ lfsr[9] ^ lfsr[8] ^ lfsr[0]};
end
assign noise_out = lfsr[0] ? amp_start : ~amp_start;
/* direct amplitude enable flag */
always @(posedge clk)
begin
if(reset)
direct_amp_enable <= 0;
else if (ctl_reg_write)
direct_amp_enable <= wr_data[2];
end
/* amplitude out */
always @(posedge clk)
begin
if (reset)
begin
amp_out <= AMP_BIAS;
amp_phase <= 1;
end
else
if (channel_enable)
begin
if (div_count == 0) // invert amplitude on clock tick
begin
amp_out <= direct_amp_enable ? amp_start :
noise_enable ? noise_out :
amp_phase ? amp_start : ~amp_start;
amp_phase <= ~amp_phase;
end
end
else
amp_out <= AMP_BIAS;
// reset phase bit when enabling the channel
if (ctl_reg_write && wr_data[0])
// when channel is enabled, phase will be flipped on next tick
// because div_count will become zero
amp_phase <= 1;
end
endmodule
module tdraudio #(DATA_WIDTH=32) (
input wire clk,
input wire reset,
input wire [6:0] io_addr,
output wire [DATA_WIDTH-1:0] rd_data,
input wire [DATA_WIDTH-1:0] wr_data,
input wire rd_en,
input wire wr_en,
output wire pdm_out,
output wire gain_sel,
output wire shutdown_n
);
localparam CLOCK_DIV_WIDTH = 22;
localparam AMP_WIDTH = 16;
localparam DAC_WIDTH = 18;
wire [4:0] chan_sel = io_addr[6:2];
wire [1:0] reg_sel = io_addr[1:0];
wire [AMP_WIDTH-1:0] chan0_amp;
wire [DATA_WIDTH-1:0] chan0_rd_data;
wire chan0_running;
wire chan0_sel = chan_sel == 5'd0;
wire chan0_rd_en = chan0_sel && rd_en;
wire chan0_wr_en = chan0_sel && wr_en;
wire [AMP_WIDTH-1:0] chan1_amp;
wire [DATA_WIDTH-1:0] chan1_rd_data;
wire chan1_running;
wire chan1_sel = chan_sel == 5'd1;
wire chan1_rd_en = chan1_sel && rd_en;
wire chan1_wr_en = chan1_sel && wr_en;
wire [AMP_WIDTH-1:0] chan2_amp;
wire [DATA_WIDTH-1:0] chan2_rd_data;
wire chan2_running;
wire chan2_sel = chan_sel == 5'd2;
wire chan2_rd_en = chan2_sel && rd_en;
wire chan2_wr_en = chan2_sel && wr_en;
wire [AMP_WIDTH-1:0] chan3_amp;
wire [DATA_WIDTH-1:0] chan3_rd_data;
wire chan3_running;
wire chan3_sel = chan_sel == 5'd3;
wire chan3_rd_en = chan3_sel && rd_en;
wire chan3_wr_en = chan3_sel && wr_en;
wire running = chan0_running || chan1_running || chan2_running || chan3_running;
reg was_running;
assign rd_data = chan0_sel ? chan0_rd_data :
chan1_sel ? chan1_rd_data :
chan2_sel ? chan2_rd_data :
chan3_sel ? chan3_rd_data :
{DATA_WIDTH{1'b1}};
wavegen chan0(clk, reset, reg_sel,
chan0_rd_data, wr_data,
chan0_rd_en, chan0_wr_en,
chan0_amp, chan0_running);
wavegen chan1(clk, reset, reg_sel,
chan1_rd_data, wr_data,
chan1_rd_en, chan1_wr_en,
chan1_amp, chan1_running);
wavegen chan2(clk, reset, reg_sel,
chan2_rd_data, wr_data,
chan2_rd_en, chan2_wr_en,
chan2_amp, chan2_running);
wavegen chan3(clk, reset, reg_sel,
chan3_rd_data, wr_data,
chan3_rd_en, chan3_wr_en,
chan3_amp, chan3_running);
reg [DAC_WIDTH:0] deltasigma_acc; // one extra bit
wire [DAC_WIDTH:0] amp_sum = chan0_amp + chan1_amp + chan2_amp + chan3_amp; // also one overflow bit here
//wire [AMP_WIDTH-1:0] amp_sum_scaled = amp_sum[DAC_WIDTH-2:2]; // shifted right to scale down
assign gain_sel = 1; // gain select: 0 -> 12dB, 1 -> 6dB
assign shutdown_n = running;
/* detect shutdown */
always @(posedge clk)
begin
if (reset)
was_running <= 0;
else
was_running <= running;
end
/* delta-sigma DAC */
always @(posedge clk)
begin
if(reset)
deltasigma_acc <= 0;
else
if (running)
deltasigma_acc <= deltasigma_acc[DAC_WIDTH-1:0] + amp_sum;
else
if (!running && was_running) // clear accumulator on shutdown
deltasigma_acc <= 0;
end
/* 1-bit audio output */
assign pdm_out = deltasigma_acc[DAC_WIDTH];
endmodule