Compare commits

..

No commits in common. "4d103f99ec041a5e50ec5fbf64b8dcdac144d7ec" and "d17c4c41fd2b27fd94b2c28986626bb8f5a8387c" have entirely different histories.

13 changed files with 346 additions and 427 deletions

View file

@ -4,7 +4,7 @@ All files, except where explicitly stated otherwise, are licensed according to t
------------------------------------------------------------------------------ ------------------------------------------------------------------------------
Copyright 2024-2026 Sebastian Lederer Copyright 2024 Sebastian Lederer
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

View file

@ -22,12 +22,11 @@ The _BSEL_ and _BPLC_ instructions are designed to assist with accessing bytes w
The byte ordering is big-endian. The byte ordering is big-endian.
## Accessing the I/O Area ## Accessing the I/O Area
The I/O area uses the same word addressing in increments of four to access the registers of the I/O controllers. In practice, only the VGA framebuffer controller and the audio controller use multiple registers. The I/O area organizes memory slightly different. Here, pointing out individual bytes is not very useful, so the I/O controllers use register addresses with increments of one. In practice, there is only the VGA framebuffer controller which uses multiple registers.
For the other controllers, there is a single 32 bit register that is repeated all over the address space of the corresponding I/O slot.
The individual I/O controllers each have a memory area of 128 bytes, so there is a maximum number of 16 I/O controllers. The individual I/O controllers each have a memory area of 128 bytes, so there is a maximum number of 16 I/O controllers.
Currently, only I/O slots 0-4 are being used. Currently, only I/O slots 0-3 are being used.
|I/O slot| Address | Controller | |I/O slot| Address | Controller |
|--------|---------|------------| |--------|---------|------------|

View file

@ -10,12 +10,12 @@ For the first channel the register addresses are:
|Address|Description| |Address|Description|
|-------|-----------| |-------|-----------|
| $A00 | Control Register | | $A00 | Control Register |
| $A04 | Clock Divider Register | | $A01 | Clock Divider Register |
| $A08 | Amplitude Register | | $A02 | Amplitude Register |
The register addresses for the second channel start at $A10, The register addresses for the second channel start at $A04,
the third channel at $A20 the third channel at $A08
and the fourth channel at $A30. and the fourth channel at $A0C.
## Reading the control register ## Reading the control register

View file

@ -4,16 +4,13 @@ Registers
|Name|Address|Description| |Name|Address|Description|
|----|-------|-----------| |----|-------|-----------|
|_FB_RA_ | $900 | Read Address | |_FB_RA_ | $900 | Read Address |
|_FB_WA_ | $904 | Write Address | |_FB_WA_ | $901 | Write Address |
| _FB_IO_ | $908 | I/O Register | | _FB_IO_ | $902 | I/O Register |
| _FB_PS_ | $90C | Palette Select | | _FB_PS_ | $903 | Palette Select |
| _FB_PD_ | $910 | Palette Data | | _FB_PD_ | $904 | Palette Data |
| _FB_CTL_ | $914 | Control Register | | _FB_CTL_ | $905 | Control Register |
| _FB_SHIFTER | $918 | Shift Assist Register |
| _FB_SHIFTCOUNT | $91C | Shift Count Register |
| _FB_SHIFTERM | $920 | Shifted Mask Register |
| _FB_SHIFTERSP | $924 | Shifter Spill Register |
| _FB_MASKGEN | $928 | Mask Generator Register |
## Pixel Data ## Pixel Data
Pixel data is organized in 32-bit-words. With four bits per pixel, one word Pixel data is organized in 32-bit-words. With four bits per pixel, one word
@ -84,54 +81,3 @@ The control register contains status information. It can only be read.
The _m_ field indicates the current graphics mode. At the time of writing, it is The _m_ field indicates the current graphics mode. At the time of writing, it is
always 1 which denotes a 640x400x4 mode. always 1 which denotes a 640x400x4 mode.
The _vb_ bit is 1 when the video signal generator is in its vertical blank phase. The _vb_ bit is 1 when the video signal generator is in its vertical blank phase.
## Shift Assist Register
The *shift assist register* can be used to accelerate shifting pixel/bitmap data.
Writing a word of pixel data to this register initialises the shifting process.
After writing to the shift count register (see below), reading the shift assist
register retrieves the shifted pixel data.
Writing to the shift assist register will reset the shift count.
## Shift Count Register
Writing a number from 0-7 to the *shift count register* triggers shifting the
contents of the shift assist register. Pixel data is shifted by four bits
to the right times the shift count. Bits 31-3 of the shift count are ignored, so you can
directly write a horizontal screen coordinate to the register.
This register cannot be read.
## Shifter Mask Register
The *shifter mask register* contains the shifted pixel data converted into
a mask. See the *mask generator register* for an
explanation of the mask.
## Shifter Spill Register
The *shifter spill register* contains the pixel data that has
been shifted out to the right. For example, if the shift count is two,
the spill register contains the two rightmost pixels (bits 7-0) of
the original pixel data, placed into the two topmost pixels (bits 31-24).
The rest of the register is set to zero.
## Mask Generator Register
The *mask generator register* creates a mask from pixel data.
For each four bits of a pixel, the corresponding four mask bits
are all set to one if the pixel value is not zero.
This can be used to combine foreground and background pixel data
with a pixel value of zero for a transparent background color.
Usually, the mask will be inverted with a *NOT* instruction
to clear all pixels in the background that are set in the foreground
with an *AND* instruction
before *ORing* foreground and background together.
Example in hexadecimal, each digit is a pixel:
| Pixel Data | Mask |
|------------|------|
| $00000000 | $00000000 |
| $00000001 | $0000000F |
| $0407000F | $0F0F000F |
| $1234ABC0 | $FFFFFFF0 |

View file

@ -123,11 +123,11 @@ FF_EXIT:
; framebuffer controller registers ; framebuffer controller registers
.EQU FB_RA $900 .EQU FB_RA $900
.EQU FB_WA $904 .EQU FB_WA $901
.EQU FB_IO $908 .EQU FB_IO $902
.EQU FB_PS $90C .EQU FB_PS $903
.EQU FB_PD $910 .EQU FB_PD $904
.EQU FB_CTL $914 .EQU FB_CTL $905
.EQU WORDS_PER_LINE 80 .EQU WORDS_PER_LINE 80
; fire width in vmem words (strict left-to-right evaluation) ; fire width in vmem words (strict left-to-right evaluation)

View file

@ -1,125 +0,0 @@
program graphbench;
uses sprites;
var starttime,endtime:DateTime;
spriteData:SpritePixels;
procedure readSpriteData(filename:string);
var f:file;
begin
open(f,filename,ModeReadOnly);
seek(f,8); (* skip file header *)
read(f,spriteData);
close(f);
end;
procedure startBench(name:string);
begin
write(name:20, ' ');
starttime := GetTime;
end;
procedure endBench;
var secDelta, minDelta, hourDelta:integer;
procedure write2Digits(i:integer);
begin
if i < 10 then
write('0');
write(i);
end;
begin
endTime := GetTime;
hourDelta := endtime.hours - starttime.hours;
minDelta := endtime.minutes - starttime.minutes;
secDelta := endtime.seconds - starttime.seconds;
if secDelta < 0 then
begin
secDelta := 60 + secDelta;
minDelta := minDelta - 1;
end;
if minDelta < 0 then
begin
minDelta := 60 + minDelta;
hourDelta := hourDelta - 1;
end;
write2Digits(hourDelta);
write(':'); write2Digits(minDelta);
write(':'); write2Digits(secDelta);
writeln;
end;
function randint(lessthan:integer):integer;
var r:integer;
begin
r := random and 511;
if r >= lessthan then
r := r - lessthan;
randint := r;
end;
procedure drawsprites(count:integer);
var i,col,x,y:integer;
begin
col := 1;
for i := 1 to count do
begin
x := randint(350);
y := randint(350);
PutSprite(x,y,spriteData);
col := col + 1;
if col > 15 then col := 1;
end;
end;
procedure drawlines(count:integer);
var i,col,x1,y1,x2,y2:integer;
begin
col := 1;
for i := 1 to count do
begin
x1 := randint(500);
y1 := randint(400);
x2 := randint(500);
y2 := randint(400);
DrawLine(x1,y1,x2,y2,col);
col := col + 1;
if col > 15 then col := 1;
end;
end;
procedure drawpoints(count:integer);
var i,col,x,y:integer;
begin
col := 1;
for i := 1 to count do
begin
x := randint(500);
y := randint(400);
PutPixel(x,y,col);
col := col + 1;
if col > 15 then col := 1;
end;
end;
begin
readSpriteData('rocket.sprt');
InitGraphics;
startBench('points 200K');
drawpoints(200000);
endBench;
InitGraphics;
startBench('lines 10K');
drawlines(10000);
endBench;
InitGraphics;
startBench('sprites 50K');
drawsprites(50000);
endBench;
end.

View file

@ -3,16 +3,31 @@
.EQU WORDS_PER_LINE 80 .EQU WORDS_PER_LINE 80
.EQU FB_RA $900 .EQU FB_RA $900
.EQU FB_WA $904 .EQU FB_WA $901
.EQU FB_IO $908 .EQU FB_IO $902
.EQU FB_PS $90C .EQU FB_PS $903
.EQU FB_PD $910
.EQU FB_CTL $914 ; calculate mask for a word of pixels
.EQU FB_SHIFTER $918 ; args: word of pixels with four bits per pixel
.EQU FB_SHIFTCOUNT $91C ; returns: value that masks out all pixels that are set
.EQU FB_SHIFTERM $920 CALC_MASK:
.EQU FB_SHIFTERSP $924 LOADC $F ; pixel mask
.EQU FB_MASKGEN $928 C_M_L0:
SWAP ; swap mask and pixels value
AND.S1.X2Y ; isolate one pixel, keep args
CBRANCH.Z C_M_L1 ; if pixel is zero, dont set mask bits
OVER ; copy current mask
OR ; or into pixels value
C_M_L1:
SWAP ; swap back, ToS is now mask bits
SHL 2 ; shift mask for next pixel to the left
SHL 2
DUP
CBRANCH.NZ C_M_L0 ; if mask is zero, we are done
DROP ; remove mask bits
NOT ; invert result
RET
; calculate vmem address from coordinates ; calculate vmem address from coordinates
; args: x,y ; args: x,y
@ -52,19 +67,13 @@ CALC_VMEM_ADDR:
.EQU PS_SHIFT_C 20 .EQU PS_SHIFT_C 20
.EQU PS_SPILL 24 .EQU PS_SPILL 24
.EQU PS_STRIPE_C 28 .EQU PS_STRIPE_C 28
.EQU PS_BPSAVE 32 .EQU PS_FS 32
.EQU PS_FS 36
PUTSPRITE: PUTSPRITE:
FPADJ -PS_FS FPADJ -PS_FS
STORE PS_SPRITE_DATA STORE PS_SPRITE_DATA
STORE PS_Y STORE PS_Y
STORE PS_X STORE PS_X
LOADREG BP
STORE PS_BPSAVE
LOADC 0
STOREREG BP
; calculate vmem address ; calculate vmem address
LOAD PS_X LOAD PS_X
LOAD PS_Y LOAD PS_Y
@ -72,6 +81,11 @@ PUTSPRITE:
CALL CALL
STORE PS_VMEM_ADDR STORE PS_VMEM_ADDR
LOAD PS_X ; shift count = x mod 8
LOADC 7
AND
STORE PS_SHIFT_C
LOADC SPRITE_HEIGHT LOADC SPRITE_HEIGHT
STORE PS_SPRITE_LINES STORE PS_SPRITE_LINES
@ -79,10 +93,12 @@ PUTSPRITE:
PS_LOOP1: PS_LOOP1:
; set read and write address ; set read and write address
; in the vga controller ; in the vga controller
LOADC FB_RA ; read address register
LOAD PS_VMEM_ADDR LOAD PS_VMEM_ADDR
DUP STOREI 1 ; use autoincrement to get to the next register
STORE.B FB_RA LOAD PS_VMEM_ADDR
STORE.B FB_WA STOREI
DROP
LOAD PS_SPRITE_DATA ; address of sprite data LOAD PS_SPRITE_DATA ; address of sprite data
DUP DUP
@ -90,20 +106,61 @@ PS_LOOP1:
STORE PS_SPRITE_DATA ; and store it again STORE PS_SPRITE_DATA ; and store it again
LOADI ; load word from orig. address LOADI ; load word from orig. address
; ------- one word of sprite pixels on stack
STORE.B FB_SHIFTER LOADC 0
LOAD PS_X STORE PS_SPILL
STORE.B FB_SHIFTCOUNT
LOAD.B FB_SHIFTERM ; get shifted mask ; loop to shift pixel data to right
NOT LOAD PS_SHIFT_C ; load shift count
LOAD.B FB_IO ; and background pixel data PS_LOOP2:
AND ; remove foreground pixels DUP ; test it for zero
CBRANCH.Z PS_LOOP2_X
LOAD.B FB_SHIFTER ; get shifted pixels SWAP ; swap count with pixels
OR ; combine with background
STORE.B FB_IO ; store into vmem ; save the pixel that is shifted out
LOADC $F ; mask the four bits
AND.S0 ; keep original value on stack
BROT ; and move them to MSB
BROT
BROT
SHL 2
SHL 2 ; shift by 28 in total
LOAD PS_SPILL ; load spill bits
SHR ; shift by four to make space
SHR
SHR
SHR
OR ; or with orig value
STORE PS_SPILL ; store new value
SHR ; shift pixels right
SHR ; four bits per pixel
SHR
SHR
SWAP ; swap back, count now ToS
DEC 1
BRANCH PS_LOOP2
PS_LOOP2_X:
DROP ; remove shift count, shifted pixels now in ToS
DUP
LOADCP CALC_MASK ; calculate sprite mask for this word
CALL
LOADCP FB_IO ; address of the i/o register
LOADI ; read word from video mem
AND ; and word with mask
OR ; OR sprite data with original pixels
LOADCP FB_IO
SWAP
STOREI ; store result into i/o reg
DROP
; set counter for remaining stripes ; set counter for remaining stripes
LOADC SPRITE_STRIPES - 1 LOADC SPRITE_STRIPES - 1
@ -113,8 +170,8 @@ PS_LOOP1:
; process spilled bits and next vertical stripe of sprite data ; process spilled bits and next vertical stripe of sprite data
; ;
PS_NEXT_STRIPE: PS_NEXT_STRIPE:
;use spill bits from first column ; put spill bits on stack for later
LOAD.B FB_SHIFTERSP LOAD PS_SPILL
LOAD PS_SPRITE_DATA ; address of sprite data LOAD PS_SPRITE_DATA ; address of sprite data
DUP DUP
@ -122,21 +179,65 @@ PS_NEXT_STRIPE:
STORE PS_SPRITE_DATA ; and store it again STORE PS_SPRITE_DATA ; and store it again
LOADI ; load word from orig. address LOADI ; load word from orig. address
STORE.B FB_SHIFTER ; store into shifter ; reset spill bits
LOAD PS_X LOADC 0
STORE.B FB_SHIFTCOUNT ; shift stuff STORE PS_SPILL
LOAD.B FB_SHIFTER ; get shifted pixels
OR ; combine with spill bits (see above) ; last spill bits are on ToS now
; shift pixel data to right
LOAD PS_SHIFT_C ; load shift count
PS_LOOP3: ; test it for zero
DUP DUP
STORE.B FB_MASKGEN ; store to mask reg to get new mask CBRANCH.Z PS_LOOP3_X
LOAD.B FB_MASKGEN ; get mask for spill bits + shifted pixels SWAP ; swap count with pixels
NOT
LOAD.B FB_IO ; get vmem data
AND ; remove foreground pixels from bg
OR ; combine with shifted pixels ; save the pixel that is shifted out
STORE.B FB_IO ; write to vmem LOADC $F ; mask the four bits
AND.S0 ; keep original value on stack
BROT ; and move them to MSB
BROT
BROT
SHL 2
SHL 2 ; shift by 28 in total
LOAD PS_SPILL ; load spill bits
SHR ; shift by four to make space
SHR
SHR
SHR
OR ; or with orig value
STORE PS_SPILL ; store new value
SHR ; shift pixels right
SHR ; four bits per pixel
SHR
SHR
SWAP ; swap back, count now ToS
DEC 1
BRANCH PS_LOOP3
PS_LOOP3_X:
DROP ; remove shift count, shifted pixels now in ToS
OR ; or together with spill bits
DUP
LOADCP CALC_MASK ; calculate sprite mask
CALL
LOADCP FB_IO ; load original pixels
LOADI
AND ; and with mask
OR ; or together with original pixels
LOADCP FB_IO
SWAP
STOREI
DROP
LOAD PS_STRIPE_C ; decrement stripe count LOAD PS_STRIPE_C ; decrement stripe count
DEC 1 DEC 1
@ -145,19 +246,22 @@ PS_NEXT_STRIPE:
CBRANCH.NZ PS_NEXT_STRIPE ; if non-zero, next stripe CBRANCH.NZ PS_NEXT_STRIPE ; if non-zero, next stripe
; write spilled bits of the last stripe into next vmem word ; write spilled bits of the last stripe into next vmem word
LOAD.B FB_SHIFTERSP ; get spill bits LOAD PS_SPILL ; get spill bits
DUP DUP
STORE.B FB_MASKGEN LOADCP CALC_MASK ; calculate sprite mask for spill bits
LOAD.B FB_MASKGEN ; get sprite mask for spill bits CALL
NOT
LOAD.B FB_IO ; load next vmem word LOADCP FB_IO
LOADI ; load next vmem word
AND ; apply sprite mask AND ; apply sprite mask
OR ; OR in spill bits OR ; OR in spill bits
STORE.B FB_IO ; write to vmem LOADCP FB_IO
SWAP ; swap pixels and addr
STOREI ; write back
DROP
LOAD PS_SPRITE_LINES ; decrement lines count LOAD PS_SPRITE_LINES ; decrement lines count
DEC 1 DEC 1
DUP DUP
@ -171,10 +275,7 @@ PS_NEXT_STRIPE:
BRANCH PS_LOOP1 BRANCH PS_LOOP1
PS_L_XT: PS_L_XT:
DROP DROP
LOAD PS_BPSAVE
STOREREG BP
FPADJ PS_FS FPADJ PS_FS
RET RET
@ -221,7 +322,7 @@ UD_S_L1:
; store vmem offset into write addr reg ; store vmem offset into write addr reg
LOADCP FB_WA LOADCP FB_WA
LOAD UD_S_OFFSET LOAD UD_S_OFFSET
STOREI 4 ; ugly but fast: reuse addr STOREI 1 ; ugly but fast: reuse addr
; with postincrement to ; with postincrement to
; get to FB_IO for STOREI below ; get to FB_IO for STOREI below

View file

@ -701,37 +701,113 @@ CMPWORDS_XT2:
; --------- Graphics Library --------------- ; --------- Graphics Library ---------------
; vga controller registers ; vga controller registers
.EQU FB_RA $900 .EQU FB_RA $900
.EQU FB_WA $904 .EQU FB_WA $901
.EQU FB_IO $908 .EQU FB_IO $902
.EQU FB_PS $90C .EQU FB_PS $903
.EQU FB_PD $910 .EQU FB_PD $904
.EQU FB_CTL $914 .EQU FB_CTL $905
.EQU FB_SHIFTER $918 ; set a pixel in fb memory
.EQU FB_SHIFTCOUNT $91C ; parameters: x,y - coordinates
.EQU FB_SHIFTERM $920 PUTPIXEL_1BPP:
.EQU FB_SHIFTERSP $924 ; calculate vmem address:
.EQU FB_MASKGEN $928 OVER ; duplicate x
; divide x by 32
SHR
SHR
SHR
SHR
SHR
SWAP
; multiply y by words per line
SHL 2
SHL 2
SHL
; draw a single pixel ADD ; add results together for vmem addr
; args: x, y, color
DUP
LOADCP FB_WA
SWAP
STOREI ; store to framebuffer write addr register
DROP
LOADCP FB_RA ; and to framebuffer read addr register
SWAP
STOREI
DROP
; x is now at top of stack
; get bit value from x modulo 32
LOADC 31
AND
SHL 2 ; (x & 31) * 4 = offset into table
LOADCP INT_TO_PIX_TABLE
ADD
LOADI
LOADCP FB_IO
; read old vmem value
LOADCP FB_IO
LOADI
; or in new bit
OR
; write new value
STOREI
DROP
RET
INT_TO_PIX_TABLE:
.WORD %10000000_00000000_00000000_00000000
.WORD %01000000_00000000_00000000_00000000
.WORD %00100000_00000000_00000000_00000000
.WORD %00010000_00000000_00000000_00000000
.WORD %00001000_00000000_00000000_00000000
.WORD %00000100_00000000_00000000_00000000
.WORD %00000010_00000000_00000000_00000000
.WORD %00000001_00000000_00000000_00000000
.WORD %00000000_10000000_00000000_00000000
.WORD %00000000_01000000_00000000_00000000
.WORD %00000000_00100000_00000000_00000000
.WORD %00000000_00010000_00000000_00000000
.WORD %00000000_00001000_00000000_00000000
.WORD %00000000_00000100_00000000_00000000
.WORD %00000000_00000010_00000000_00000000
.WORD %00000000_00000001_00000000_00000000
.WORD %00000000_00000000_10000000_00000000
.WORD %00000000_00000000_01000000_00000000
.WORD %00000000_00000000_00100000_00000000
.WORD %00000000_00000000_00010000_00000000
.WORD %00000000_00000000_00001000_00000000
.WORD %00000000_00000000_00000100_00000000
.WORD %00000000_00000000_00000010_00000000
.WORD %00000000_00000000_00000001_00000000
.WORD %00000000_00000000_00000000_10000000
.WORD %00000000_00000000_00000000_01000000
.WORD %00000000_00000000_00000000_00100000
.WORD %00000000_00000000_00000000_00010000
.WORD %00000000_00000000_00000000_00001000
.WORD %00000000_00000000_00000000_00000100
.WORD %00000000_00000000_00000000_00000010
.WORD %00000000_00000000_00000000_00000001
PUTMPIXEL:
LOADC 1
; set a pixel in fb memory
; parameters: x,y,color - coordinates, color value (0-15)
PUTPIXEL: PUTPIXEL:
PUTPIXEL_4BPP: PUTPIXEL_4BPP:
.EQU PUTPIXEL_X 0 .EQU PUTPIXEL_X 0
.EQU PUTPIXEL_Y 4 .EQU PUTPIXEL_Y 4
.EQU PUTPIXEL_COLOR 8 .EQU PUTPIXEL_COLOR 8
.EQU PUTPIXEL_BPSAV 12 .EQU PUTPIXEL_PIXPOS 12
.EQU PUTPIXEL_FS 16 .EQU PUTPIXEL_FS 16
FPADJ -PUTPIXEL_FS FPADJ -PUTPIXEL_FS
STORE PUTPIXEL_COLOR STORE PUTPIXEL_COLOR
STORE PUTPIXEL_Y STORE PUTPIXEL_Y
STORE PUTPIXEL_X STORE PUTPIXEL_X
LOADREG BP
STORE PUTPIXEL_BPSAV
LOADC 0
STOREREG BP
; calculate vmem address: (x / 8) + (y * 80) ; calculate vmem address: (x / 8) + (y * 80)
LOAD PUTPIXEL_X LOAD PUTPIXEL_X
@ -750,56 +826,82 @@ PUTPIXEL_4BPP:
ADD ; add results together for vmem addr ADD ; add results together for vmem addr
DUP LOADCP FB_WA
STORE.B FB_WA ; set as write and read addresses OVER
STORE.B FB_RA STOREI ; store to framebuffer write addr register
DROP
LOADCP FB_RA ; and to framebuffer read addr register
SWAP ; swap addr and value for STOREI
STOREI
DROP
LOAD PUTPIXEL_X
; |0000.0000|0000.0000|0000.0000|0000.1111|
LOADC 7
AND ; calculate pixel position in word
LOADC 7
SWAP
SUB ; pixpos = 7 - (x & 7)
STORE PUTPIXEL_PIXPOS
LOAD PUTPIXEL_COLOR LOAD PUTPIXEL_COLOR
CBRANCH.Z PUTPX_CLR ; color 0 is special case LOAD PUTPIXEL_PIXPOS
SHR ; rcount = pixpos / 2
; create pixel data from color value in ROTLOOP_:
; leftmost pixel data bits (31-28) DUP ; exit loop if rcount is 0
LOADC 0 CBRANCH.Z ROTLOOP_END
LOAD PUTPIXEL_COLOR SWAP ; pixel value is now on top of stack
BPLC BROT ; value = value << 8
SWAP ; rcount is now on top of stack
DEC 1 ; rcount = rcount - 1
BRANCH ROTLOOP_
ROTLOOP_END:
DROP ; drop rcount
; shifted pixel value is now at top of stack
LOAD PUTPIXEL_PIXPOS
LOADC 1
AND
CBRANCH.Z EVEN_PIXPOS
SHL 2 ; if pixpos is odd, shift by 4 bits
SHL 2 SHL 2
SHL 2 EVEN_PIXPOS:
STORE.B FB_SHIFTER ; store pixel into shifter LOAD PUTPIXEL_X
; get bit value from x modulo 8
LOADC 7
AND
SHL 2 ; (x & 7) * 4 = offset into table
LOADCP INT_TO_MASK_TABLE
ADD
LOADI
LOAD PUTPIXEL_X ; use x coord as shift count ; read old vmem value
STORE.B FB_SHIFTCOUNT ; writing triggers shifting LOADCP FB_IO
LOADI
; mask bits
AND
; or in shifted pixel value
OR
LOAD.B FB_SHIFTERM ; get shift result as mask ; write new value
NOT ; invert to get background mask LOADCP FB_IO
LOAD.B FB_IO ; get background pixel data SWAP
AND ; remove bits for new pixel from bg STOREI
DROP
LOAD.B FB_SHIFTER ; load shifted pixel
OR ; OR in new pixel bits
STORE.B FB_IO ; write new pixel data word to vmem
PUTPX_XT:
LOAD PUTPIXEL_BPSAV
STOREREG BP
FPADJ PUTPIXEL_FS FPADJ PUTPIXEL_FS
RET RET
PUTPX_CLR: .CPOOL
LOADCP $F0000000 ; mask for leftmost pixel
STORE.B FB_SHIFTER ; shift accordingly
LOAD PUTPIXEL_X
STORE.B FB_SHIFTCOUNT
LOAD.B FB_SHIFTER ; get shifted value
NOT ; invert for real mask
LOAD.B FB_IO ; get background pixels
AND ; clear pixel with mask
STORE.B FB_IO ; no need to OR in new pixel, just store to vmem
BRANCH PUTPX_XT
INT_TO_MASK_TABLE:
.WORD %00001111_11111111_11111111_11111111
.WORD %11110000_11111111_11111111_11111111
.WORD %11111111_00001111_11111111_11111111
.WORD %11111111_11110000_11111111_11111111
.WORD %11111111_11111111_00001111_11111111
.WORD %11111111_11111111_11110000_11111111
.WORD %11111111_11111111_11111111_00001111
.WORD %11111111_11111111_11111111_11110000
; draw a line between two points ; draw a line between two points
; parameters: x0, y0, x1, y1, color ; parameters: x0, y0, x1, y1, color

View file

@ -11,9 +11,9 @@ START_PCMAUDIO:
LOADCP _DIV LOADCP _DIV
CALL CALL
LOADC AUDIO_BASE + 4 LOADC AUDIO_BASE + 1
SWAP ; put clock divider on ToS SWAP ; put clock divider on ToS
STOREI 4 STOREI 1
LOADCP 32768 ; set amplitude to biased 0 LOADCP 32768 ; set amplitude to biased 0
STOREI STOREI
DROP DROP
@ -95,7 +95,7 @@ PLAY1_L0:
AND AND
CBRANCH.NZ PLAY1_L0 ; loop if fifo is full CBRANCH.NZ PLAY1_L0 ; loop if fifo is full
LOADC AUDIO_BASE+8 ; store amplitude value LOADC AUDIO_BASE+2 ; store amplitude value
SWAP SWAP
STOREI STOREI
DROP DROP
@ -207,7 +207,7 @@ SMPLQ_I_B:
LOADCP $FFFF LOADCP $FFFF
AND AND
LOADC AUDIO_BASE+8 LOADC AUDIO_BASE+2
SWAP SWAP
STOREI ; write sample, keep addr STOREI ; write sample, keep addr
@ -281,7 +281,7 @@ SMPLQ_I_END1:
DROP DROP
; set amplitude out to zero (biased) ; set amplitude out to zero (biased)
LOADC AUDIO_BASE+8 LOADC AUDIO_BASE+2
LOADCP 32768 LOADCP 32768
STOREI STOREI
DROP DROP

View file

@ -137,7 +137,7 @@ module top(
assign fb_wr_data = mem_write_data; assign fb_wr_data = mem_write_data;
vgafb vgafb0(`clock, pixclk, rst, vgafb vgafb0(`clock, pixclk, rst,
mem_addr[5:2], fb_rd_data, fb_wr_data, mem_addr[3:0], fb_rd_data, fb_wr_data,
fb_rd_en, fb_wr_en, fb_rd_en, fb_wr_en,
VGA_HS_O, VGA_VS_O, VGA_R, VGA_G, VGA_B); VGA_HS_O, VGA_VS_O, VGA_R, VGA_G, VGA_B);
`endif `endif
@ -247,7 +247,7 @@ module top(
assign tdraudio_wr_data = mem_write_data; assign tdraudio_wr_data = mem_write_data;
tdraudio tdraudio0(`clock, ~rst, tdraudio tdraudio0(`clock, ~rst,
mem_addr[8:2], mem_addr[6:0],
tdraudio_rd_data, tdraudio_rd_data,
tdraudio_wr_data, tdraudio_wr_data,
tdraudio_rd_en, tdraudio_rd_en,

View file

@ -1,9 +1,6 @@
`timescale 1ns / 1ps `timescale 1ns / 1ps
`default_nettype none `default_nettype none
// enable shifter/masker registers
`define ENABLE_FB_ACCEL
// Project F: Display Timings // Project F: Display Timings
// (C)2019 Will Green, Open Source Hardware released under the MIT License // (C)2019 Will Green, Open Source Hardware released under the MIT License
// Learn more at https://projectf.io // Learn more at https://projectf.io
@ -129,14 +126,6 @@ module vgafb #(VMEM_ADDR_WIDTH = 15, VMEM_DATA_WIDTH = 32) (
localparam REG_PAL_SLOT = 3; localparam REG_PAL_DATA = 4; localparam REG_PAL_SLOT = 3; localparam REG_PAL_DATA = 4;
localparam REG_CTL = 5; localparam REG_CTL = 5;
`ifdef ENABLE_FB_ACCEL
localparam REG_SHIFTER = 6;
localparam REG_SHIFTCOUNT = 7;
localparam REG_SHIFTERM = 8;
localparam REG_SHIFTERSP = 09;
localparam REG_MASKGEN = 10;
`endif
localparam COLOR_WIDTH = 12; localparam COLOR_WIDTH = 12;
localparam PALETTE_WIDTH = 4; localparam PALETTE_WIDTH = 4;
@ -156,32 +145,12 @@ module vgafb #(VMEM_ADDR_WIDTH = 15, VMEM_DATA_WIDTH = 32) (
wire pix_rd; wire pix_rd;
wire [VMEM_DATA_WIDTH-1:0] status; wire [VMEM_DATA_WIDTH-1:0] status;
`ifdef ENABLE_FB_ACCEL
reg [VMEM_DATA_WIDTH-1:0] acc_shifter_in;
reg [(VMEM_DATA_WIDTH*2)-1:0] acc_shifter_out;
reg [4:0] acc_shift_count;
reg acc_start_shift;
reg [VMEM_DATA_WIDTH-1:0] acc_mask_in;
reg [VMEM_DATA_WIDTH-1:0] acc_mask_buf;
reg [VMEM_DATA_WIDTH-1:0] acc_shiftmask_buf;
wire [VMEM_DATA_WIDTH-1:0] acc_shifter_mask = acc_shiftmask_buf;
wire [VMEM_DATA_WIDTH-1:0] acc_shifter_out_h = acc_shifter_out[(VMEM_DATA_WIDTH*2)-1:VMEM_DATA_WIDTH];
wire [VMEM_DATA_WIDTH-1:0] acc_shifter_out_l = acc_shifter_out[VMEM_DATA_WIDTH-1:0];
`endif
assign vmem_rd_en = rd_en; assign vmem_rd_en = rd_en;
assign vmem_wr_en = (reg_sel == REG_VMEM) && wr_en; assign vmem_wr_en = (reg_sel == REG_VMEM) && wr_en;
assign rd_data = (reg_sel == REG_VMEM) ? vmem_rd_data : assign rd_data = (reg_sel == REG_VMEM) ? vmem_rd_data :
(reg_sel == REG_RD_ADDR) ? cpu_rd_addr : (reg_sel == REG_RD_ADDR) ? cpu_rd_addr :
(reg_sel == REG_WR_ADDR) ? cpu_wr_addr : (reg_sel == REG_WR_ADDR) ? cpu_wr_addr :
(reg_sel == REG_CTL) ? status : (reg_sel == REG_CTL) ? status :
`ifdef ENABLE_FB_ACCEL
(reg_sel == REG_SHIFTER) ? acc_shifter_out_h:
(reg_sel == REG_SHIFTERM) ? acc_shiftmask_buf :
(reg_sel == REG_SHIFTERSP) ? acc_shifter_out_l :
(reg_sel == REG_MASKGEN) ? acc_mask_buf :
`endif
32'hFFFFFFFF; 32'hFFFFFFFF;
wire [VMEM_ADDR_WIDTH-1:0] cpu_addr = vmem_wr_en ? cpu_wr_addr : cpu_rd_addr; wire [VMEM_ADDR_WIDTH-1:0] cpu_addr = vmem_wr_en ? cpu_wr_addr : cpu_rd_addr;
@ -302,74 +271,6 @@ module vgafb #(VMEM_ADDR_WIDTH = 15, VMEM_DATA_WIDTH = 32) (
if(rd_en && reg_sel == REG_VMEM) cpu_rd_addr <= cpu_rd_addr + 1; // auto-increment read addr on read if(rd_en && reg_sel == REG_VMEM) cpu_rd_addr <= cpu_rd_addr + 1; // auto-increment read addr on read
end end
`ifdef ENABLE_FB_ACCEL
//
// shifter/masker registers
//
always @(posedge cpu_clk)
begin
if(wr_en && reg_sel == REG_SHIFTER)
acc_shifter_in <= wr_data;
end
always @(posedge cpu_clk)
begin
if(wr_en && reg_sel == REG_SHIFTCOUNT)
begin
acc_shift_count <= { wr_data[2:0], 2'b0};
acc_start_shift <= 1;
end
if(acc_start_shift)
acc_start_shift <= 0;
end
always @(posedge cpu_clk)
begin
if (acc_start_shift)
acc_shifter_out <= {acc_shifter_in, {VMEM_DATA_WIDTH{1'b0}}} >> acc_shift_count;
end
// mask register
always @(posedge cpu_clk)
begin
if (wr_en && reg_sel == REG_MASKGEN)
acc_mask_in <= wr_data;
end
// mask output is buffered to avoid timing problems
always @(posedge cpu_clk)
begin
acc_mask_buf <= {
{4{|{acc_mask_in[31:28]}}},
{4{|{acc_mask_in[27:24]}}},
{4{|{acc_mask_in[23:20]}}},
{4{|{acc_mask_in[19:16]}}},
{4{|{acc_mask_in[15:12]}}},
{4{|{acc_mask_in[11:8]}}},
{4{|{acc_mask_in[7:4]}}},
{4{|{acc_mask_in[3:0]}}}
};
end
always @(posedge cpu_clk)
begin
acc_shiftmask_buf = {
{4{|{acc_shifter_out_h[31:28]}}},
{4{|{acc_shifter_out_h[27:24]}}},
{4{|{acc_shifter_out_h[23:20]}}},
{4{|{acc_shifter_out_h[19:16]}}},
{4{|{acc_shifter_out_h[15:12]}}},
{4{|{acc_shifter_out_h[11:8]}}},
{4{|{acc_shifter_out_h[7:4]}}},
{4{|{acc_shifter_out_h[3:0]}}}
};
end
`endif
//
// shifting pixels at pixel clock
//
always @(posedge pix_clk) always @(posedge pix_clk)
begin begin
if(scanline || shift_count == MAX_SHIFT_COUNT) // before start of a line if(scanline || shift_count == MAX_SHIFT_COUNT) // before start of a line

View file

@ -358,9 +358,7 @@
<Runs Version="1" Minor="22"> <Runs Version="1" Minor="22">
<Run Id="synth_1" Type="Ft3:Synth" SrcSet="sources_1" Part="xc7a35ticsg324-1L" ConstrsSet="constrs_1" Description="Vivado Synthesis Defaults" AutoIncrementalCheckpoint="false" WriteIncrSynthDcp="false" State="current" Dir="$PRUNDIR/synth_1" IncludeInArchive="true" IsChild="false" AutoIncrementalDir="$PSRCDIR/utils_1/imports/synth_1" AutoRQSDir="$PSRCDIR/utils_1/imports/synth_1" ParallelReportGen="true"> <Run Id="synth_1" Type="Ft3:Synth" SrcSet="sources_1" Part="xc7a35ticsg324-1L" ConstrsSet="constrs_1" Description="Vivado Synthesis Defaults" AutoIncrementalCheckpoint="false" WriteIncrSynthDcp="false" State="current" Dir="$PRUNDIR/synth_1" IncludeInArchive="true" IsChild="false" AutoIncrementalDir="$PSRCDIR/utils_1/imports/synth_1" AutoRQSDir="$PSRCDIR/utils_1/imports/synth_1" ParallelReportGen="true">
<Strategy Version="1" Minor="2"> <Strategy Version="1" Minor="2">
<StratHandle Name="Vivado Synthesis Defaults" Flow="Vivado Synthesis 2024"> <StratHandle Name="Vivado Synthesis Defaults" Flow="Vivado Synthesis 2024"/>
<Desc>Vivado Synthesis Defaults</Desc>
</StratHandle>
<Step Id="synth_design"/> <Step Id="synth_design"/>
</Strategy> </Strategy>
<GeneratedRun Dir="$PRUNDIR" File="gen_run.xml"/> <GeneratedRun Dir="$PRUNDIR" File="gen_run.xml"/>
@ -380,9 +378,7 @@
</Run> </Run>
<Run Id="impl_1" Type="Ft2:EntireDesign" Part="xc7a35ticsg324-1L" ConstrsSet="constrs_1" Description="Default settings for Implementation." AutoIncrementalCheckpoint="false" WriteIncrSynthDcp="false" State="current" Dir="$PRUNDIR/impl_1" SynthRun="synth_1" IncludeInArchive="true" IsChild="false" GenFullBitstream="true" AutoIncrementalDir="$PSRCDIR/utils_1/imports/impl_1" LaunchOptions="-jobs 6 " AutoRQSDir="$PSRCDIR/utils_1/imports/impl_1" ParallelReportGen="true"> <Run Id="impl_1" Type="Ft2:EntireDesign" Part="xc7a35ticsg324-1L" ConstrsSet="constrs_1" Description="Default settings for Implementation." AutoIncrementalCheckpoint="false" WriteIncrSynthDcp="false" State="current" Dir="$PRUNDIR/impl_1" SynthRun="synth_1" IncludeInArchive="true" IsChild="false" GenFullBitstream="true" AutoIncrementalDir="$PSRCDIR/utils_1/imports/impl_1" LaunchOptions="-jobs 6 " AutoRQSDir="$PSRCDIR/utils_1/imports/impl_1" ParallelReportGen="true">
<Strategy Version="1" Minor="2"> <Strategy Version="1" Minor="2">
<StratHandle Name="Vivado Implementation Defaults" Flow="Vivado Implementation 2024"> <StratHandle Name="Vivado Implementation Defaults" Flow="Vivado Implementation 2024"/>
<Desc>Default settings for Implementation.</Desc>
</StratHandle>
<Step Id="init_design"/> <Step Id="init_design"/>
<Step Id="opt_design"/> <Step Id="opt_design"/>
<Step Id="power_opt_design"/> <Step Id="power_opt_design"/>

View file

@ -614,7 +614,6 @@ def create_image_with_stuff(imgfile):
slotnr = putfile("../examples/benchmarks.pas", None , f, part, partstart, slotnr) slotnr = putfile("../examples/benchmarks.pas", None , f, part, partstart, slotnr)
slotnr = putfile("../examples/animate.pas", None , f, part, partstart, slotnr) slotnr = putfile("../examples/animate.pas", None , f, part, partstart, slotnr)
slotnr = putfile("../examples/graphbench.pas", None , f, part, partstart, slotnr)
slotnr = putfile("../examples/sprites.inc", None , f, part, partstart, slotnr) slotnr = putfile("../examples/sprites.inc", None , f, part, partstart, slotnr)
slotnr = putfile("../examples/sprites.s", None , f, part, partstart, slotnr) slotnr = putfile("../examples/sprites.s", None , f, part, partstart, slotnr)
slotnr = putfile("../examples/background.pict", None , f, part, partstart, slotnr) slotnr = putfile("../examples/background.pict", None , f, part, partstart, slotnr)